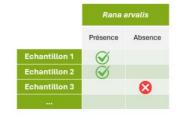

Chaque organisme vivant laisse sur son passage des traces d'ADN...

... qui peuvent être utiles pour :



Liste et abondance relative des taxons présents pour chaque échantillon (exemple : inventaire amphibiens)

Ordre	Famille	Genre	Espèce	Échantillon 1	Échantillon 2	Échantillon 3
Caudata	Salamandridae	Triturus	Triturus cristatus	68 458	164	35 461
Gymnophiona	Caeciliidae	Caecilia	Caecilia perdita	0	537	4 697
Anura	Ranidae	Rana	Rana arvalis	320	18 432	0 K
***	7		***			

*nombre de séquences obtenues pour chaque taxon

Tableau de présence/absence de l'espèce ciblée

Possibilité de quantification :

- Ratio indicateur
- Nombre de copies d'ADN par gramme de sol ou litre d'eau

- Méthodes non invasives
- (+) Détection d'espèces rares
- (+) Mise en œuvre simple et peu onéreuse
- 1 Inventaire taxonomique global à partir d'un simple prélèvement
- Complémentaire aux inventaires traditionnels
- Résolution marqueur-dépendante
- Signal semi-quantitatif (abondances relatives au sein d'un échantillon)
- (+) Spécificité et probabilité de détection accrues
- (+) Possibilité d'obtenir un signal quantitatif
- O Une seule espèce ciblée

Gestion d'espèces menacées et invasives

Étude de régime alimentair

Programme de réhabilitation

Applications

Avantages/Limites

Processus d'analyse

Résultats

Études d'impact

Cartographie de biodiversité

Compréhension de communautés écologiques